\qquad
3-5 The Graph Scale-Change Thm
Date \qquad A\#7

Goal: Apply the Graph Scale-Change Theorem to all relations.

Warm Up:

1. If you multiply a number by 0.8 , you can get back to the original number by either multiplying the product by \qquad or dividing the product by \qquad _.
2. If you divide a number by 30 , you can get back to the original number by either multiplying the quotient by \qquad or dividing the quotient by \qquad .
3. Multiple Choice. When $a \neq 0, \frac{x}{\frac{1}{a}}=$
a. $a x$
b. $\frac{x}{a}$
c. $\frac{\frac{x}{1}}{a}$
d. $\frac{a}{x}$

Activity: Using Desmos, enter the these two functions into the fields:
a. $y=x^{3}+3 x^{2}-4 x$
b. $y=b\left(x^{3}+3 x^{2}-4 x\right)$, make a slider for b.
c. $y=\left(\frac{x}{a}\right)^{3}+3\left(\frac{x}{a}\right)^{2}-4\left(\frac{x}{a}\right)$, make a slider for a.

Adjust the sliders to see how a and b affect the original function.

Graph Scale-Change Theorem

In general, a scale change centered at the \qquad with the
horizontal scale factor $a \neq 0$ and vertical scale factor $b \neq 0$ is a
transformation that maps \qquad to \qquad The rule for this is \qquad When $a=b$, then the scale change is called a \qquad .

Graph Scale-Change Theorem

Given a preimage graph described by a sentence in x and y, the following two processes yield the same image graph:
(1) replacing x by and y by in the sentence;
(2) applying the scale change to the preimage graph.

Questions \quad Review: Compare this to the Graph-Translation Theorem.

Example 1: The relation described by $x^{2}+y^{2}=25$ is graphed at the lower left.
a. Find the images of points labeled $A-F$ on the graph under

$$
S:(x, y) \rightarrow(2 x, y) .
$$

b. Graph the image on the plane lower right.
c. Write an equation for the image relation.

Example 2: Sketch and compare the graphs of $y=|x|$ and $\frac{y}{4}=|6 x|$. Describe the transformation.

Summary:

